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Introduction

Since the invention of the world-
wide web 25 years ago, a lot of data
sources collected in the past, and cur-
rently being collected, have been digi-
tized and become easily accessible.
Today it is easy to locate, collect, and
analyze digitized data and informa-
tion that would have taken weeks or
months in the past. The expanding
access to huge datasets and emergence
of powerful and real-time technologies
represent opportunities for analysis
that were never possible in the past—
thus leading to the term “big data.”
In a digitized world, big data refers to
the things one can do at a large-scale
that cannot be done at a smaller one,
to extract new insights or create new
forms of value, in ways that can change
markets, organizations, the relation-
ships between various stakeholders,
and more. It has been transformative
within many industrial sectors and has
been heralded as the next frontier for
innovation and competitiveness.

Large volumes of data have
accumulated within the remedia-
tion industry primarily driven by the
requirements of regulatory compli-
ance and risk management. Although
this topic might once have interested
only a few “data geeks,” big data are
now relevant within our industry, and
all stakeholders stand to benefit from
its application. In this column, we
explore what big data means for envi-
ronmental restoration, and the poten-
tial it has to yield insights that support
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more streamlined and sustainable
approachestobenefitall stakeholders—
regulatory agencies, responsible par-
ties, researchers, remediation practi-
tioners, and local communities. In the
past, we learned slowly and gradually
about natural attenuation of petroleum
hydrocarbons and chlorinated solvents
from data collected from thousands of
sites. The concept of big data did not
exist at that time. The insights gained
took several years to observe mainly
because of the poor access to the nec-
essary data points across many sites.

The Evolution of Remediation
Related Data Management

The gravity and impacts of big
data may not be transparent to reme-
diation practitioners yet, due to the fact
that the mere concept of “environmen-
tal big data” may still be an abstract or
amorphous concept. Remediation data
management is fragmented, and many
different kinds of data are managed in
different formats and configurations.
In addition, emphasis was, and is,
always placed on detailed evaluation
and analysis of data collected specific
to individual sites.

What has been overlooked and
ignored in our industry so far is the
vast trove of environmental data and
information related to but beyond the
immediate purview of individual site
specific needs (Table 1). Big data rel-
evant to remediation can be classified
into structured and unstructured data.

Examples of structured data are clean-
up standards, performance monitoring
results, groundwater and soil chem-
istry, geologic and hydrogeologic
parameters, air quality measurements,
weather conditions, and compliance
records. Good examples of unstruc-
tured data are scientific papers, regula-
tory changes, site history, USGS maps,
aerial photographs, spill records, and
permit renewals. Although evalua-
tion of unstructured data is possible, it
presents more challenges than evalua-
tion of structured data. Therefore, big
data evaluation of structured data is
the focus of this discussion.

Environmental remediation data
usually have multiple dimensions (con-
taminant type, time, location, depth,
different variables, and so on) to be rel-
evant for decisions. As a result, there
is a tremendous amount of data gener-
ated that can be tapped into to develop
insights. However, the evolution of how
these data are managed has been slow
and unplanned. Even though we are
yet to see the big data revolution enter
the remediation domain, the industry
is ready for harnessing the available
data, information and the acquired
knowledge to be at the heart of gaining
predictive insights and smart decision-
making. Important steps in this direc-
tion include: benchmarking the data
for the remediation industry, develop-
ing standardized reporting standards,
mapping the available data and infor-
mation, and prioritizing the analytical
tools.

Groundwater Monitoring & Remediation 36, no. 2/ Spring 2016 21



Table 1
Existing Publically Available and Relevant Environmental Datasets
Type of Data

10,000 environmental chemicals and

Database Description

U.S. EPA Toxicology Testing in the
21st century (Tox21)

Develop better toxicity assessment methods

to quickly and efficiently test whether certain
chemical compounds have the potential to disrupt
processes in the human body that may lead to
negative health effects. Toxicity data that can then
be evaluated within the ToxCast tool

approved drugs

U.S. EPA EPA’s Toxicity Forecaster
(ToxCast)

Bring together various toxicity data to provide
rapid and efficient methods to prioritize, screen,
and evaluate thousands of chemicals. iCSS ToxCast
Dashboard that allows for easy access to related
data

Online real-time database of (e.g., CAA, CWA)
permits and enforcements/violations

Chemical properties and structure

U.S. EPA Enforcement and
Compliance History Online (ECHO)

U.S. EPA Aggregated Computational
Toxicology Resource (ACToR)

U.S. EPA Integrated Risk Information
System (IRIS)

EJSCREEN

Facility list; violations list

Online warehouse of all publicly available chemical Aggregates data from over 1000 public
toxicity data sources on over 500,000 chemicals

Identifying and characterizing the health hazards of Toxicity values for use in risk assessment
chemicals found in the environment (e.g., RfD, RfC, oral slope factor)

EJSCREEN is an environmental justice mapping Twelve environmental indicators (e.g.,

and screening tool that provides EPA with a

nationally consistent dataset and approach for

combining environmental and demographic
indicators. A good example of the power of

air quality data, proximity to NPL sites)
Six demographic indicators (e.g., percent
low income)

Twelve environmental justice indices

integrating datasets in geographical analysis

Global Earth Observation System of
Systems (GEOSS)

The Group on Environmental Observation, GEO,
is a voluntary partnership of governments and agriculture, biodiversity, climate,
organizations which created the GEOSS platform disasters, ecosystems, energy, health,
for integration and analysis of global environmental water management and climate

data for study in multiple areas of societal benefit

Global environmental datasets, including

EROS is a remotely sensed data management,
systems development, and research field center for
the U.S. Geological Survey’s (USGS)

U.S. Fish and Wildlife maintains the NWI to
provide public access to wetlands mapping and to
provide a tool for reporting and predicting trends

Remotely sensed, for example satellite,
datasets

Earth Resources Observation and
Science (EROS) Center

National Wetlands Inventory Geospatial wetlands data

U.S. Geological survey maintains this database of
surface and groundwater data for use in managing
water resources

Water resource data including surface
water flow and levels, groundwater
levels, water quality, and water use

National Water Information System

Concentration data over time, well
construction data, and so on

In some states, contaminated site data and water
supply well data are housed in state databases.
Examples are the Geotracker database of
environmental data for regulated facilities and the
Groundwater Ambient Monitoring and Assessment
Program databases in California

State site databases

the documents in which the data are

Another area to improve is connec-
tion of different methods used for the
collection and storage of environmen-
tal datasets. Older datasets may have
relied on pen and paper for collection
and storage. Recently, datasets housed
solely in Microsoft Excel® seem to
have become antiquated. Currently,
relational databases (e.g., Microsoft
Access®, EQuIS) are a common method

for storing data and querying focused
datasets. These are complemented by
data collection devices, many times
handheld, that are configured to sync
flawlessly with the designed database.
Some specialized relational databases
are designed to report certain metrics
based on predetermined big data evalu-
ations. Conversely, many data reposi-
tories were developed to house only
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reported, such as state regulatory repos-
itories. Several states, however, have
the raw data stored in online databases
readily accessible to the public (e.g.,
GeoTracker in California). As big data
evaluations become more and more
desirable, storage of the data in its raw
form is recognized as being useful. The
quality of the data is equally important
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as its format. Different data types are
held to different levels of quality assur-
ance. Use of data with variable levels
of quality assurance can lead to unreli-
able conclusions, and use of high qual-
ity data is an important consideration
when preparing a big data evaluation.
There are multiple ways to
approach evaluation of environmental
remediation big data sets. The most
straightforward practice in the past
was simple correlation plots between
two data types that may be related
(e.g., organic carbon concentration and
total chlorinated solvent concentration
in engineered reductive dechlorination
[ERD] systems). If there is a strong
correlation between datasets, a simple
linear relationship can provide mean-
ingful predictions. More sophisticated
evaluation techniques are also available
and may include statistical analyses
(e.g., t-test, path analysis, Spearman
rank correlations) or data mining. Data
mining looks for hidden patterns in
data that can be used to predict future
behavior and has been used in the
fields of communications, insurance,
retail, banking, manufacturing, educa-
tion, and bioinformatics. Techniques
such as clustering, principal compo-
nent analysis, decision trees, Bayes-
ian networks, and neural networks are
used in data mining to evaluate rela-
tionships among datasets, most sig-
nificant variables and develop models
for prediction. If strong relationships
are found between datasets, the cor-
relations and casual relationships can

Background Determination
CSM Development
Remedial Design

Adaptive Management of
Operations

Compliance Reporting
Performance Evaluation
+ Closure Strategy

o Global

be identified. This can be very power-
ful in developing strategies for future
decision-making. A good example of
this in environmental remediation is
the reduction in operating and main-
tenance costs by monitoring only the
relevant and required parameters for
enhancing the performance and com-
pliance of remediation systems.

What makes the emerging field
of big data analysis in remediation
interesting is that the full value is not
always evident. In addition to compil-
ing and maximizing value from exist-
ing data, evaluators can integrate new
data collected from emerging technol-
ogies, industry trends and regulatory,
and other recent developments. Data
analysis capabilities in the remediation
arena has been lagging and a modern
approach for exploiting information
from multiple data streams is essen-
tial for us to extract valuable insights.
The remediation industry should begin
to embrace techniques derived from
web-based analytics, visualization, and
other computational tools that deliver
clear, concise portrayals of the insights
gained from the data. The concept of
big data fusion provides the founda-
tion for making the most of big data
and it is more than statistical evalua-
tions. Data fusion requires an under-
standing of the underlying information
contained in the data, so that one can
combine different datasets to identify
key relationships that lead to game
changing insights of the process or
concept of interest.

Data

Figure 1. Scales of environmental datasets and uses from data analysis.

The Universe of Environmental
Remediation Big Data

Big data in environmental remedi-
ation can come from many sources and
may be related to data from a single
site (site level), a group of related sites
(portfolio level), or across unrelated
sites (global level). In some cases, par-
ticularly large complex sites, signifi-
cant amount of data and information
may be available collected over many
years (decades) and from hundreds
of monitoring wells which could be
considered as a stand-alone big data
set. Figure 1 shows the relationship
between these different levels of big
data. Evaluation of site-level datasets
can provide insights into the relation-
ships between natural site conditions
(e.g., ambient geochemistry, hydro-
geologic complexities), engineered
systems (e.g., substrate addition), rem-
edy performance (e.g., concentration
reductions), and process trouble-shoot-
ing (e.g., formation of by-products).
Examples of big data at the site level
are smart characterization data (e.g.,
high-resolution investigation results),
automated sensor data, and large
plume remediation data which are dis-
cussed in more detail below. Big data
evaluations at a specific portfolio level
(e.g., hundreds of petroleum retail
sites) can be used to articulate insights
gained and predict performance and
conditions across an entire portfolio.
Looking at data relationships across
unrelated sites (e.g., National Priority

Regulatory Policy
Development

Improved Remediation
Industry Solutions

Technology Focus
Contaminant Focus
Industry Focus

Improvements

Reduction in lrelevant Data
Collection

Financial and Regulatory Risk
Management

Programmatic Streamlining

Industry/Sector Trend
Identification
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List sites) can provide insights related
to specific industry-wide trends and
practices. Examples of how global
level datasets can be used to turn data
into insights for improving remedia-
tion practices is provided in Table 2.
Examples of global datasets used to
refine our understanding contami-
nant mass flux, develop and validate
benchmark values, improve light non-
aqueous phase liquid (LNAPL) man-
agement strategies and understand the
implications of bioremediation as a
relevant mechanism in natural attenu-
ation of 1,4-dioxane are discussed in
more detail below.

Environmental big data evaluations
can provide an introspective look into
the remediation “black box,” remove
the dependence and bias toward spe-
cific remedial technologies, and pro-
vide the technical knowledge and
insights for effective decision-making.
At the portfolio level, it can lead to an
advanced understanding of remedia-
tion effectiveness, or areas for remedial
optimization, and can provide direc-
tion for future efforts within the port-
folio. At the global level, these types
of evaluations can lead to a paradigm
shift in understanding the effectiveness
and limitations of specific technologies
and thus developing robust technical
impracticability guidelines for cer-
tain types of complex sites. Predictive
insights gained can also help in refine-
ment of existing or development of
new regulatory guidelines (e.g., alter-
nate clean-up standards and risk-based
regulations). Figure 2 illustrates how
analysis of big environmental datasets
derived from global sets of site specific
data could be used to transform data to
information to knowledge and insights.
The ultimate question for environmen-
tal big data evaluations is whether we
can develop predictive insights from
all existing datasets. At this point in
time, the authors feel the answer is a
resounding “Yes!”

Insights Gained from Big

Data Analysis and Future

Opportunities

Site Level Smart Characterization

Data for Stratigraphic Flux Analysis
The conventional approach to

viewing and interpreting site investi-

gation data relies on two-dimensional

data-box figures, which were adequate
when characterization datasets only
consisted of a small number of per-
manent monitoring wells. When only
groundwater data are considered and
interpolated, the resulting picture
provides a distorted view of the mass
distribution in the source zone as well
as the entire plume, because ground-
water sampling is inherently biased
toward the most permeable zones. We
now recognize that our understanding
of contaminant transport needs to go
beyond the traditional distorted view
of mass distribution and include a more
detailed analysis of the mass flux, as
experience has repeatedly shown that
the majority of the mass flux occurs
in a small portion of the plume cross-
section within the aquifer. As such,
characterization methods have to inte-
grate multiple types of data to find the
zone where mass flux is occurring.
Recent developments in smart
investigations have the potential for
providing a systematic approach
that focuses on developing a three-
dimensional (3-D) interpretation of
the aquifer architecture in conjunction
with contaminant concentrations for
the evaluation of mass flux through the
application of big data (Figure 3). The
use of smart characterization methods,
in place of traditional investigation
methods, integrate dynamic, real-time,
high-density soil, and groundwater
sampling data with hydro-stratigraphic
interpretations and permeability map-
ping in three-dimensions including
groundwater, whole-core saturated
soil, and permeability data simultane-
ously. Smart characterization methods
generate big data sets, with thousands
of data points collected rapidly during
an investigation. Insights into contami-
nant transport from these big data sets
require fusion of big data sets, linking
classical geological methods of inter-
pretation with a classification frame-
work that describes the 3-D aquifer
architecture in terms of transport
potential. The thousands of individual
measurements, collected during smart
investigations, quickly overwhelm any
traditional approach to data evalua-
tion. Therefore, specialized software

is employed to allow 3-D viewing by

fusing together thousands of measure-
ments from high-resolution borings
(Figure 4). Big data fusion is needed
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because the high-density data collected
must be organiied into the stratigraphic
flux framework, where permeability
and concentration data are combined
to provide an indication of mass flux.
This approach builds on sequence stra-
tigraphy methods and provides insights
regarding how permeability distribu-
tions within elements of the aquifer
architecture control contaminant trans-
port. This process is different than the
conventional stratigraphy approach by
the fact that the impacted aquifer sys-
tem can be classified by the relative
flux within the different segments.

Past methods of interpolation
which ignore the permeability struc-
ture will interpolate mass into storage
zones even though the mass is present
almost exclusively in transport zones.
These limitations are overcome using
big data fusion and interpretation
based on concepts of plume maturing.
In the source zone, the approach will
correctly identify mass present in the
slow advection and storage zones, as
well as the architecture of the zones.
In the downgradient plume, the data
fusion approach will correctly identify
the mass flux zones where contaminant
mass is present. Understanding these
key aspects of contaminant transport
can be used to develop quantitative
metrics to rank and prioritize remedia-
tion efforts and provides insights into
clean-up time frames and realistic end
points.

Evaluation of Site Level Big Data in
Effective Large Plume Management
Remediation of large plume sites,
meaning sites for which the scale of the
plume is measured in miles and time-
frames are measured in decades, can in
themselves generate big data. At these
scales, monitoring wells can number in
the hundreds, annual analytical counts
can number in the thousands, and real-
time operational data are constantly
generated.  Effective management
of large plume remediation projects
requires real-time data analysis to iden-
tify what to focus on for remediation
and inform decisive adaptive opera-
tions. Figure 5 shows an example of the
ongoing data generation from one such
site, where groundwater monitoring
and operational data generated from 12
different hexavalent chromium reme-
dial systems, including large-scale in
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Table 2

Examples of Big Data and Their Evaluations in Environmental Restoration

Reference(s) Description Type of Data Evaluation Approach Outcome
Arcadis Catalog measurements Concentrations of flame  Basic statistics Scientific study of flame retardants
internal of flame retardants in retardants in dust samples based on different in indoor dust has been increasing
evaluation indoor dust in peer- in a variety of indoor environmental rapidly since 2001 with focus on
reviewed literature and ~ environments relationships polybrominated diphenyl ethers.
evaluate spatial and Concentrations of polybrominated
temporal variances biphenyl ethers in North American
residential settings appear to be
decreasing, while concentrations
of replacement flame retardant
chemicals increase
Schnobrich Evaluation of 85 Groundwater Linear regression; Results indicated that the maximum

et al. (2011)

Rice et al.
(1995)

Adamson et al.
(2014) and
Adamson et al.
(2015)

Maguire et al.
(2006)

Connor et al.
(2015)

Lahvis et al.
(2013)

enhanced reductive
dechlorination projects

Early evaluation of

data from 271 sites in
California with leaking
underground storage
tank (LUST) to evaluate
petroleum hydrocarbon
plume length and
stability

Evaluation of the
co-occurrence and
natural attenuation

of 1,4-dioxane and
chlorinated solvents in
groundwater

Remediation
performance and
rebound of intensive
source depletion
technologies were
evaluated where
treatment targeted dense
nonaqueous phase liquid
(DNAPL) source zones

Review and summary of
13 studies on benzene,
MTBE and/or TBA
plumes

Evaluation of soil-gas
data at sites impacted
with dissolved phase
petroleum hydrocarbons
to determine vapor
intrusion risk

concentrations of
chlorinated solvents, total
organic carbon, pH, and
sulfate

Transcription of
California state file
information from 271
sites into electronic
database based on
standard checklist

Groundwater
concentrations of
chlorinated solvents and
1,4-dioxane

Performance data from
59 sites where chemical
oxidation, enhanced
bioremediation, thermal
treatment, or surfactant/
co-solvent flushing were
implemented

Compilation of multiple-
site datasets from the
United States containing
data from 22 to more than
4000 sites each on plume
length and stability

Soil-gas measurements
at hundreds of petroleum
UST sites spanning a
range of environmental
conditions, geographic
regions, and a 16-year
time period (1995 to
2011)

correlations

Statistics and
nonparametric
graphical displays

GIS-based algorithms,

Wilcoxon rank sum

test, linear regression,

Spearman rank
correlation

Quantification and
comparison of
datasets

Statstical analysis

Nonparametric
Kaplan—Meier
statistics

rate of degradation was independent
of total organic carbon concentration
as long as reducing conditions
dominate and TOC remains
approximately 10mg/L above
background

Early work on plume length and
stability that supported the eventual
establishment of the low threat
closure policy for LUST sites in
California in 2012

Industry-wide paradigm shift in
understanding of 1,4-dioxane fate
and transport in groundwater

Set expectations on achievable
percent reduction and permanence of
source zone NAPL depletion

Demonstrated that MTBE, TBA,
and benzene plume lengths are
comparable at most sites. Found
consistency among datasets in
different geographic regions and in a
variety of hydrogeologic regimes

This is an example of big data
analysis informing regulatory
policy: U.S. EPA Office of Research
and Development recently cited
conclusions from this study,

among others, to provide technical
recommendations to the Office of
Underground Storage Tanks for the
development screening criteria to
identify structures that are at risk
from petroleum vapor intrusion
(Wilson et al. 2012)
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Table 2 (Continued)
Reference(s) Description Type of Data Evaluation Approach Outcome
Microbial An agglomeration of Constituent In progress In progress, but could provide
Insights Inc. results generated by concentrations, predictive values for a variety of
Molecular Microbial Insights and geochemical data, microbial genetic targets
Biology relevant environmental molecular data (e.g.,
Results data from project sites qPCR DNA results)
Database
Schnobrich Comparative analysis Groundwater Linear regression; Identified half-lives of various carbon

et al. (2010) between 20+ active
enhanced reductive
dechlorination sites to
evaluate the overall rates
of dechlorination and
length of remedial time

observed at the field

scale
Arcadis Evaluate risk from soil
internal gas at 91 fuel service
evaluation stations with free

product

concentrations of correlations
chlorinated solvent, total
organic carbon, nitrate,

sulfate, and pH

Soil-gas results for TO-15 Comparison to

Michigan regulatory

standards

substrates. Correlated elevated sulfate
(more than 1000 milligrams per

litre [mg/L], elevated nitrate (more
than 500 mg/L), and decreased pH
(less than 6s.u.) with decreased
chlorinated solvent degradation half-
lives

Concluded the vapor intrusion
pathway does not pose a risk at 90 of
the 91 sites. Paradigm shift in ability
to close petroleum sites under a risk-
based program in Michigan

Traditional Data
Analysis

Site Specific Data

¢ Investigative data (box charts)
Lithology
Hydrogeology
Contaminant Distribution
Geochemistry
Operational Data
Performance Data

Data
Analysis

Outcomes
Remedy Design
Management of Operations
Compliance Reports
Closure Strategy

Big Data Analysis

Site Specific
Data 2

Data 1

Site Specific
Data 3

Site Specific |—>)|
—>

Data... 1

,000

Predictive Modeling

Big Data
Analysis

(Correlation and
Causation
Patterns)

|

Knowledge

Outcomes (Examples)

e De of il
« Opening the “black box” of emerging technologies
* New i of ) fate and

* Regulatory enhancements

Insights

Figure 2. Path of big data analysis in remediation.

situ reactive treatment recirculation
systems and groundwater extraction
and agricultural treatment systems.
The example in Figure 5 represents
a small fraction of the data collected
at this site, which is approximately 1
mile by 2 miles and includes opera-
tion of over 180 remediation wells with
data collection from over 700 monitor-
ing wells. The datasets generated are
evaluated on a monthly to quarterly
frequency to adapt the remedy, guide
which injections and extraction wells
to operate, make changes to remedial
well flow rates and changes to organic
carbon injection rates. Advanced data
management and analytical techniques

could greatly improve the ability to
quickly assimilate and analyze large
accumulating big data at large plume
sites, providing insights to more effi-
ciently manage remediation and reduce
overall remedial timeframes.

Analysis of Global Datasets
for Developing and Validating
Benchmarks

Benchmarking within the con-
text of remediation practices can be
interpreted as improving the perfor-
mance of technologies by continu-
ously identifying, understanding, and
adapting new information and knowl-
edge for developing best practices and
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processes. Many times big data evalu-
ation can provide the benchmarks,
but more importantly can validate the
benchmarks on a continuous basis.
For example, after the development of
molecular targets to quantify the sub-
surface population of Dehalococcoi-
des (DHC) microbial species, project
teams started collecting environmen-
tal samples at individual sites. The
commonly accepted benchmark of
1x107 cells/L for a healthy microbial
population of DHC capable of com-
plete dechlorination came from aca-
demic research (Lu et al. 2006). In the
case of DHC, it will be worthwhile to
conduct a big data analysis to correlate
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Figure 3. Real-time smart characterization results at a chlorinated solvent site. The color-ramp columns at the left of each sounding
depict relative hydraulic conductivity (K) derived from HPT; the color ramp symbols to the right show TCE concentrations meas-
ured through vertical aquifer profile groundwater sampling. Nearly 200 groundwater samples and 400 soil samples were combined
with more than 10,000 HPT estimates of relative K to generate the relative flux map shown below.
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Figure 4. Relative flux results based on the product of relative hydraulic conductivity and TCE groundwater concentrations. The
color-ramp shaded areas on the flux transects high-light more than 90% of the relative flux at the site.

these population counts with dechlo-
rination performance across hundreds
of sites. The insights gained either
would validate or refute the com-
monly accepted benchmark. It will
be a worthwhile effort to refine and

NGWA.org

reinforce this benchmark over time by
evaluation of big data from multiple
sites with successful enhanced reduc-
tive dechlorination systems.

Another example of benchmark-
ing is from the insights gained from

analysis of performance data from
more than 100 ERD sites. The authors
performed a big data evaluation of
these ERD systems by evaluating
chlorinated solvent concentrations,
total organic carbon, pH, and sulfate
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Figure 5. A small subset of operational and analytical data collected and evaluated to make informed operational decisions at a large

plume site in southern California.

concentrations to quantify the half-
lives of chlorinated solvents and assess
what factors affect the first order
decay rate (Schnobrich et al. 2010,
2011). The rate of chlorinated solvent
degradation did not exhibit a linear
relationship with total organic carbon
concentration; however, a threshold of
10mg/L above background was related
to enhanced dechlorination rates. This
led to refined designs of target organic
carbon concentrations for hundreds of
future projects resulting in cost sav-
ings, enhanced performance, and faster
cleanups.

Another ongoing effort within the
remediation industry that has great
potential for developing benchmarks,
but is not yet there, is the growing
database housed by Microbial Insights
Inc. (MI; Knoxville, Tennessee). MI is
an environmental molecular analysis
company that has developed numerous
molecular targets to help practitioners
understand the subsurface microbio-
logical population and their propen-
sity toward bioremediation of soil and
groundwater constituents of concern.
Recently, M1 started housing their results
in a relational database and asking prac-
titioners to help provide additional site
data (e.g., constituent concentrations,
geochemistry, and performance data).
With these datasets together, they may
be able to identify relevant benchmarks
(similar to the DHC example above).
This would allow practitioners to apply
future microbial results more directly in
development of site conceptual models
and remedial technology screening. The
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challenge will be gathering the appro-
priate raw data, at the required level of
quality, from practitioners across the
industry on a continuing basis.

Analysis of Global Datasets to
Improve LNAPL Management

How we view and manage sites
with LNAPL has changed recently, and
we no longer rely purely on LNAPL
thicknesses to assess how impacted the
site is or how remediation is progress-
ing. Gone are the days (or at least they
should be) where we prepare LNAPL
thickness contour plots and thickness
trend graphs. The evolution of industry
knowledge and insights into the topic
has resulted in a change from a singu-
lar focus on the thickness of LNAPL
in wells as a remedial end point to
evaluating the risk associated with
the LNAPL, the mobility and recover-
ability of the LNAPL and the rate at
which the LNAPL is being naturally
depleted. This shift was possible due
to the big data analysis performed on
LNAPL behavior from data collected
from 1000 petroleum sites under dif-
ferent geologic and climatic conditions
across the country and the insights
gained from that analysis.

The most important insight gained
from the big data analysis is that the
mass removed by natural source zone
depletion (NSZD) is far greater than
the mass recoverable by any of the
most efficient removal technologies. It
is also apparent that the rate of LNAPL
depletion in the subsurface has been
greatly underestimated. Conventional
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wisdom was that LNAPLs did not
degrade, partly because it was thought
that the LNAPL conditions impeded
degradation. This paradigm shifted as
correlations were made between the
generation of carbon dioxide (CO,),
elevated temperatures (Figure 6), and
microbial degradation of LNAPL. As a
result of big data fusion and advances
in sensor technology, we can envision
being able to quantify NSZD rates
not just once or twice through CO,
and temperature monitoring, but con-
tinuously through data logging. With
refinement, we will be able to under-
stand temporal variability of the NSZD
process, improving the reliability
NSZD rate estimates, and then make
better decisions about whether to man-
age the LNAPL or remediate it.

Although NSZD is receiving wide-
spread acceptance in concept, fully
translating these concepts into regula-
tory policy has been slow. Accumulat-
ing a big data set of LNAPL depletion
rates and performing a correlation
analysis with measured NSZD indica-
tor parameters (CO, flux and subsur-
face temperature increase) is crucial
for the next step. Developing an estab-
lished methodology, from the insights
gained, to quantify the NSZD rates for
the regulatory community will increase
the strength of these arguments and
inclusion as an acceptable technology
in lieu of active remediation. It has
been rewarding to participate in the
industry-wide effort to make a step
change in how we manage LNAPL
sites.
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Figure 7. Frequency distribution of mobile porosity (8,) values from tracer tests
completed at dozens of different sites across the United States.

Evaluation of Global Datasets of
Tracer Study Data Provides Insight
into Realistic Values of Porosities

We recognized early on that con-
ventional hydrogeologic approaches to
designing in situ remediation systems,
particularly those relying on reagent
injections, was not reliable. We came to
this understanding through a review of
many in situ chemical oxidation (ISCO)
and ERD projects and through perfor-
mance monitoring and optimization

NGWA.org

of systems. For a long time, practitio-
ners relied on design assumptions that
incorporated the concept of effective
porosity, often assumed to be 20%,
and transport based on the advection—
dispersion equation. The industry was
faced with reagent vendors claim-
ing that 5 gallons of reagent per foot
of injection well would lead to wide-
spread reagent distribution and enable
injection well spacings in excess of 30
and even 50 feet. Many early in situ

remedy designs applied this high con-
centration, low-volume injection strat-
egy with less than satisfactory results.
Often we would see little indication of
the injected reagent or resulting degra-
dation reactions in downgradient per-
formance monitoring wells in addition
to other adverse impacts.

To understand the disparity between
vendor claims and observed results, we
undertook a review of a global set of
performance data from dozens of sites
and compared the results to first prin-
ciples on hydraulics and contaminant
transport. Based on this analysis, we
recognized that injection tracer testing
was essential to actually measure the
volume—radius relationship between
injected reagents and radius of influ-
ence and then determining what degree
of post injection expansion could reli-
ably be obtained during the drift phase.
We would also monitor tracer concen-
trations at wells downgradient to verify
flow direction and transport velocity,
based on breakthrough curve analysis.
The observed focusing of flow within
the permeable zones of the aquifer led
to observations that were consistent
with transport zone porosities of 5%
to 10% at most; many sites exhibited
transport zone porosities that were less
than 5% (Figure 7). These insights
gained from tracer testing data from
hundreds of sites were documented
(Payne et al. 2008), and we adopted the
term mobile porosity, owing to the fact
that majority of the transport occurs in
a small segment of the aquifer. Through
tracer testing, we have developed a new
paradigm on in situ remediation via
injection.

Understanding Biodegradation as
a Relevant Mechanism in Natural
Attenuation of 1,4-Dioxane

Our experience with 1,4-dioxane
natural attenuation provides a great
example of how big data analytics
can provide insights, if not paradigm
shifting perspectives on remediation of
emerging contaminants. Until recently,
conventional wisdom has been that
1,4-dioxane is not subject to the bio-
degradation mechanisms of natural
attenuation. But as we analyze more
and more data from dozens of sites, it
is obvious that stable, if not receding,
1,4-dioxane plumes are identified in
our portfolio of sites.
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With the development of applicable
molecular biology tools, we can begin
to connect decreasing concentrations
and geochemical data with potential
biodegradation mechanisms at play in
the subsurface. With the help of com-
mercial molecular labs, like MI, we can
understand the relative contributions of
metabolic biodegradation of 1,4-dioxane
under aerobic conditions and cometa-
bolic biodegradation of 1,4-dioxane in
the presence of appropriate substrates
(such as methane, ethane or propane)
using monooxygenase enzymes.

However, there are still challenges
in understanding why 1,4-dioxane
biodegradation appears to be a rel-
evant mechanism at some sites, but
not others, and which substrate(s) or
functional monooxygenase enzymes
are driving 1,4-dioxane biodegrada-
tion. Where 1,4-dioxane degradation
is apparent, the mechanism remains
unclear. For sites with no expression
of 1,4-dioxane biodegradation, it may
be that the particular monooxygenase
enzymes capable of 1,4-dioxane oxi-
dation under environmental conditions
have not yet been characterized, or the
appropriate genetic targets have not
been established. We think that data
fusion across many sites will provide
answers. By digging deeper into the
active microbial communities at many
sites we can identify which mono-
oxygenase enzymes -are responsible
and how they can be enabled, allow-
ing more 1,4-dioxane sites to be cost-
effectively managed with natural and/
or enhanced attenuation.

The Road Ahead

A robust debate is ensuing over
whether big data will, or should, result
in a decision-making paradigm shift
that emphasizes correlation identifica-
tion over causation analysis. It can be
argued that correlation is an adequate
basis for action in many situations
because correlations can be found
much faster and cheaper than causa-
tion. Many also think that for most
every day needs, knowing what and
not why is good enough. A real-world
example of this could be the propen-
sity for people to want to understand
what causes by-products formation
within ERD reactive zones in certain
geographic locations without wanting

to know the hydro-bio-geochemical
conditions and equilibrium based on
the regional geology.

By focusing on collecting the right
data during the remedy implementa-
tion, we can optimize the performance
of the system to account for the emerg-
ing behaviors that we see develop that
were not obvious based on the con-
ceptual site model before remediation
commenced. By operating the system
dynamically, one can systematically
Jearn about the remedy performance
by responding to a positive or nega-
tive feedback loop and continuously
calibrate the conceptual site model. As
we improve our approach to individual
sites, there is an opportunity to learn
from hundreds of sites by analyzing
the big data and developing impact-
ful insights on optimizing the configu-
ration and operation of remediation
systems. This could lead to the devel-
opment of expert systems which could
break down the barriers specialized
knowledge and provide decision sup-
port to practitioners at multiple levels.

The next frontier in remediation can
be harnessing the power of automated
monitoring with sensors designed to
continuously collect performance data
such as contaminant concentrations,
geochemistry or hydraulics. For exam-
ple, now we realize that finding the flux
through smart characterization enables
one to tailor the remedies along the
plume trajectory and optimize the tech-
nologies based on plume maturity. We
could extend the benefits of real-time
decision-making from smart charac-
terization to performance monitoring.
Imagine the possibilities as we harness
the power of a broader range of micro-
sensors capable of transmitting data on
contaminant concentrations and reagent
distribution during in situ remediation?
Or, what if we were able to track tar-
geted microbial populations and growth
rates without the time consuming spe-
cialized laboratory analyses? Or, what
if we mixed virtual reality solution
with high-resolution characterization
that would allow all stakeholders to
take a site walk from anywhere in the
world? Streaming technology can take
the concept of investigation and perfor-
mance data collection and evaluation to
new dimensions by developing instru-
mentation from the macrolevel down
to the microlevel. Today’s sensors are
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powerful and inexpensive, network
access to remote data is increasing, sci-
entific models are improving, and big
data algorithms for crunching data are
also improving.

The aim may be to go beyond the
correlation between datasets and iden-
tify the cause and effect relationship.
Sometimes breakthroughs are obtained
by starting at first principles and chal-
lenging conventional wisdom. Some-
times aggregating big data enables one
to see beyond the limitations that small
datasets provide. Environmental resto-
ration successes are inherently site spe-
cific, but understanding the key drivers
that affect implementation of various
technologies or behavior of contami-
nants, or developing a strategy that will
enable optimization of multiple tech-
nologies requires a big data perspective.
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Evaluation of Long-Term Performance
and Sustained Treatment at Enhanced
Anaerobic Bioremediation Sites

by Travis M. McGuire, David. T. Adamson, Michael S. Burcham, Philip B. Bedient, and Charles J. Newell

Abstract

This study evaluated the long-term performance of enhanced anaerobic bioremediation (EAB) at chlorinated solvent
sites to determine if sustained treatment processes were helping to prevent concentration rebound. A database of ground-
water concentration versus time records was compiled for 34 sites, with at least 3 years of posttreatment monitoring data
(median=4.7 years, range=3.0 to 11.7years). Long-term performance was evaluated based on order-of-magnitude (OoM)
changes in parent compound concentrations during various monitoring periods. Results indicate that, relative to the pretreat-
ment concentration, a median concentration reduction for all 34 sites of 1.0 OoM (90% reduction) was achieved by the end
of the posttreatment monitoring period. No rebound was observed at 65% of the sites between the first year of posttreatment
monitoring and the final year. During this posttreatment period, Mann-Kendall trend analysis indicated that the concentration
was stable or decreasing at 89% of the sites where a trend could be established (n=27; 33% decreasing, 56% stable, 11% in-
creasing). Statistical analysis indicates there is no evidence that the distribution of median concentration reductions after the
first year of posttreatment monitoring was different than the distribution of median reductions 2 to 11 years later at the end of
the monitoring period (p=0.67). Similarly, statistical analysis indicates that there is no evidence that the distribution of median
reductions for a larger set of sites (n=84) with less than 3 years of posttreatment monitoring data (1.1 OoM; 92% reduction)
was different than the distribution of median OoM reductions for the 34-site dataset with longer monitoring periods (p=0.80).
This suggests that, at a typical site, a 3-year monitoring period should be sufficient for evaluating performance. The results of
this study indicate that, in the long term, after the end of active treatment, sustained treatment processes contribute to relatively
modest concentration reductions but do mitigate rebound at the majority of EAB sites.

Introduction anaerobic bioremediation, chemical oxidation or reduction,
and thermal treatment. Most of these technologies are fairly
mature in the sense that extensive guidance and vendor sup-
port exists for those who wish to implement them (Leeson et
al. 2013). There is also a relatively high level of regulatory
comfort with these technologies, and one or more is com-
monly included in feasibility studies for treating CVOCs in
groundwater (US EPA 2013). As a result, these technologies

Managing sites with contaminated soil and groundwater
frequently requires a decision about whether remediation is
necessary, and if so, what type of technology is appropriate
to address site-specific risks. Given this, there is consider-
able interest in understanding how well various treatment
technologies will perform, both in terms of making prog-
ress toward cleanup objectives and in performing in a cost-

effective manner (Stroo et al. 2003; McDade et al. 2005; have been implemented at a large number of sites in the past

McGuire et al, 2006; Triplett Kingston et al. 2010; National ~ Several decades, and the monitoring data collected during

Research Council (NRC) 2012; Leeson et al. 2013). For sites the posttreatment period provide a means for assessing long-
term performance.

where chlorinated volatile organic compounds (CVOCs) are
the primary contaminant, there are a number of widely-used

technologies for in situ treatment of source zone ground-

water (NRC 2012; US EPA 2013). This includes enhanced during active treatment are not always sustained. At some
) sites, a rebound in aqueous-phase concentrations is observed

in the period after treatment is over (McGuire et al. 2006;
Mundle et al. 2007; Krembs et al. 2010; Scheutz et al. 2010;
© 2016, National Ground Water Association. Hadley and Newell 2012). McGuire et al. (2006) reported
doi: 10.1111/gwmr.12151 that 25% of sites where a source depletion technology was

Multi-site evaluations of posttreatment monitoring data
have highlighted that the concentration reductions achieved
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